

PyNEMO User Guide (v0.1)

Contents:

	Introduction

	Installation
	Dependencies

	Anaconda

	From Source

	Usage
	pynemo

	pynemo_settings_editor

	pyNEMO NcML Generator Usage
	Generator GUI
	Define a Target Output File

	Define the Individual Data Variable

	Generate the NcML file

	Regular Expression (Regex)

	Examples

	Example 1: Northwest European Shelf

	Example 2: Lighthouse Reef

	Troubleshooting

Indices and tables

	Index

	Module Index

	Search Page

Introduction

PyNEMO is a tool to set up the lateral boundary conditions for a regional NEMO [http://www.nemo-ocean.eu]
model configuration. The tool is written in Python, largely within the
Anaconda [https://store.continuum.io/cshop/anaconda/] environment to aid
wider distribution and to facilitate development. In their current form these
tools are by no means generic and polished, but it is hoped will form a foundation
from which something more formal can be developed. The following sections provide a quick-start guide with
worked examples to help the user get up and running with the tool.

The tool essentially uses geographical and depth information from the source
data (e.g. a global ocean simulation) and destination simulation (i.e. the
proposed regional NEMO model configuration) to determine which source points are required
for data extraction. This is done using a kdtree approximate nearest neighbour
algorithm. The idea behind this targetted method is that it provides a generic
method of interpolation for any flavour of ocean model in order to set up a
regional NEMO model configuration. At present (alpha release) the tools do not
contain many options, but those that exist are accessed either through a NEMO style
namelist or a convient GUI.

Installation

This page provides a guide to installing pyNEMO.

Dependencies

	Python 2.7 (Not tested with 3.x)

	scipy

	netCDF4-python

	numpy

	matplotlib

	basemap

	thredds_crawler

	seawater

	pyjnius (optional)

Anaconda

Using conda: pyNEMO supports Win64, OSX and Linux. for other operating systems please build from source.

Note

It is recommended to create a seperate virtual environment for pyNEMO.
Please follow the instructions on doing this at http://www.continuum.io/blog/conda

conda install -c https://conda.anaconda.org/srikanthnagella pynemo

This will install pynemo and its dependencies. This build is generally outdated as development and
bug fixes to the source are a regular occurrence. It may be better to install from source until a beta
release is available.

From Source

Installing pyNEMO using other flavours of software or from source. Install all the dependencies and
download the source code from svn and install.

svn checkout http://ccpforge.cse.rl.ac.uk/svn/pynemo/trunk/Python/
python setup.py install

Note

If building from source in the Anaconda environment all dependencies can
be installed using conda apart from thredds_crawler and pyjnius which can
be installed using the following Anaconda channel:

conda install -c https://conda.anaconda.org/srikanthnagella thredds_crawler
conda install -c https://conda.anaconda.org/srikanthnagella pyjnius

Usage

There are two tools available in pyNEMO. They are described in detail below.

pynemo

This command line tool reads a BDY file, extracts boundary data and prepares
the data for a NEMO simulation. The bdy file is a plain text file containing
key value pairs. Please look at the sample namelist.bdy [http://ccpforge.cse.rl.ac.uk/gf/project/pynemo/scmsvn/?action=browse&path=%2Ftrunk%2FPython%2Fdata%2Fnamelist.bdy&view=markup]
file, which shares common syntax with the NEMO simulation namelist input file.

Note

Directory paths in bdy file can be relative or absolute.
The application picks the relative path from the current working
directory.

Syntax for pynemo command is

> pynemo [-g] -s <bdy file>

For help

> pynemo -h
> usage: pynemo [-g] -s <namelist.bdy>
> -g (optional) will open settings editor before extracting the data
> -s <bdy filename> file to use

Example comamnd

> pynemo -g -s namelist.bdy

pynemo_settings_editor

This tool will open a window where you can edit the mask and change the values of bdy parameters.

Syntax for pynemo_settings_editor command is

> pynemo_settings_editor [-s <bdy filename>]

Note

If no file name is specified then a file dialog box will open to select a file.

For help

> pynemo_settings_editor -h
> usage: pynemo_settings_editor -s <namelist.bdy>

Example:

pynemo_settings_editor -s namelist.bdy

pyNEMO NcML Generator Usage

This GUI tool facilitates the creation of a virtual dataset for input into pyNEMO. The virtual dataset is defined using NetCDF Markup Language (NcML [http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/ncml/Tutorial.html]).

Using NcML, it is possible to:

	modify metadata

	modify and restructure variables

	combine or aggregate data from multiple datasets. The datasets may reside in the local file system or in a remote OPeNDAP (http://www.opendap.org/) server.

Generator GUI

[image: _images/generator-gui.jpg]
Overview of the NcML Generator GUI.

Users need to follow three distinct steps when using the GUI to generate the virtual dataset:

	Define a target output NcML file

	Define the individal variable

	Generate the NcML file

Define a Target Output File

User should provide the path and name of the target NcML file. The convention is to use .ncml as the file suffix. The target file can be specified manually using the input text box or visually using the Select file button. Clicking the button will bring up a file dialogue.

Define the Individual Data Variable

The nemo data variables are grouped into the following types :

	Tracer (temperature, salinity)

	Dynamics (zonal velocity, meridian velocity, sea surface height)

	Ice (ice thickness, leads fraction, snow thickness)

	Ecosystem (reserved for future use)

	Grid (reserved for future use)

Users can access the required variable by selecting the tab widget and the variable from the Variable dropdown list.

[image: _images/add-variable.jpg]
Example definition of the Ice thickness variable.

For each variable, users must provide information for:

	Source directory - the location of the folder containing the input datasets. User can provide an absolute path to a local file folder or an OPeNDAP endpoint, e.g. http://esurgeod.noc.soton.ac.uk:8080/thredds/dodsC/PyNEMO/data/

	Existing variable name - name used in the source datasets

Users may further filter the source datasets using:

	Include subdirs - check the box to include contents in the sub directories under the specified Source directory

	Regular expression - provides a search pattern for filtering the files. See the Regex section below for more information.

After completing the variable form, users should click the Add button to store the input value. Alternatively, users can use the Reset button to reset the input to the previously saved values. If there are no existing values, the variable tab will be reset to the default state.

Generate the NcML file

After adding all the variables, users can generate the NcML file by clicking the Generate button. If the operation is successful, a pop-up confirmation dialogue will appear. The generated NcML file can then be used in the bdy file to set up the NEMO simulation.

Regular Expression (Regex)

Regular expression is a special text string for describing a search pattern to match against some text. You may compare using regex to filter what files to include in your datasets against using wildcard (*) to specify a file search pattern in your computer.

A detailed description of how to define regular expression for filtering datasets in NcML is available at http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/ncml/AnnotatedSchema4.html#regexp.

The following table provides some typical examples of regex:

	Regex

	Matching File Path

	Description

	.*V.nc$

	c:/dir/dir/dir/abcV.nc

	The file path ends in

	
	d:/muV.nc

	V.nc

	.*.nc$

	c:/dir/dir/dir/*.nc

	The file suffix is nc

	
	d:/*.nc

	

	.*/2015.*.nc$

	c:/dir/2015_01_16.nc

	The file path contains

	
	d:/2015*.nc

	2015 and the file suffix

	
	e:/a/b/c/20151106T.nc

	is nc

Examples

Here we provide two worked examples using pyNEMO. The first is a setup of the Northwest European Shelf using
a remote dataset. The second is an end-to-end setup of a small regional model in the tropics.

Example 1: Northwest European Shelf

[image: _static/eg1.png]
Northwest European Shelf Bathymetry

This example has been tested on the ARCHER HPC facillity (22 Feb 2017).

First, create a working directory into which the code can
run. All the data required for this example are held on a
THREDDS server so no addtional data are required.

Note

make sure cray-netcdf-hdf5parallel cray-hdf5-parallel are loaded.
This example has been consructed under PrgEnv-intel. e.g.

module swap PrgEnv-cray PrgEnv-intel
module load cray-netcdf-hdf5parallel
module load cray-hdf5-parallel

Note

Be careful to avoid symbolic links in NEMO control files.

cd $WDIR
mkdir OUTPUT

Now we’re ready to generate the boundary conditions using pyNEMO.
If this is not installed follow the installation guide or a quick
setup could be as follows:

cd ~
module load anaconda
conda create --name pynemo_env scipy=0.16.0 numpy matplotlib=1.5.1 basemap netcdf4 libgfortran=1.0.0
source activate pynemo_env
conda install -c conda-forge seawater=3.3.4
conda install -c https://conda.anaconda.org/srikanthnagella thredds_crawler
conda install -c https://conda.anaconda.org/srikanthnagella pyjnius
export LD_LIBRARY_PATH=/opt/java/jdk1.7.0_45/jre/lib/amd64/server:$LD_LIBRARY_PATH
svn checkout https://ccpforge.cse.rl.ac.uk/svn/pynemo
cd pynemo/trunk/Python
python setup.py build
export PYTHONPATH=~/.conda/envs/pynemo/lib/python2.7/site-packages/:$PYTHONPATH
python setup.py install --prefix ~/.conda/envs/pynemo
cp data/namelist.bdy $WDIR
cd $WDIR

Next we need to modify the namelist.bdy file to point it to the correct
data sources. First we need to create an ncml file to gather input data
and map variable names. First we update sn_src_dir, sn_dst_dir and
cn_mask_file to reflect the working path (e.g. sn_src_dir = ‘$WDIR/test.ncml’,
sn_dst_dir = ‘$WDIR/OUTPUT’ and cn_mask_file = ‘$WDIR/mask.nc’).
Explicitly write out $WDIR. Next we need to generate test.ncml.

Note

pynemo may have to be run on either espp1 or espp2 (e.g. ssh -Y espp1)
as the JVM doesn’t have sufficient memory on the login nodes.

ssh -Y espp1
module load anaconda
source activate pynemo_env
cd $WDIR
pynemo_ncml_generator

For each of the tracer and dynamics variables enter the following URL as
the source directory:

http://esurgeod.noc.soton.ac.uk:8080/thredds/dodsC/PyNEMO/data

Add a regular expression for each (Temperature, Salinity and Sea Surface
Height each use: .*T.nc$ and the velocities use .*V.nc$ and .*V.nc$)
After each entry click the Add button. Finally fill in the output file
including directory path (this should match sn_src_dir). Once this is complete
click on the generate button and an ncml file should be written to $WDIR.

Then using pynemo we define the area we want to model and generate some
boundary conditions:

Note

I’ve had to add the conda env path to the $PYTHONPATH as python does
seem to be able to pick up pyjnius!?

export LD_LIBRARY_PATH=/opt/java/jdk1.7.0_45/jre/lib/amd64/server:$LD_LIBRARY_PATH
export PYTHONPATH=~/.conda/envs/pynemo_env/lib/python2.7/site-packages:$PYTHONPATH
pynemo -g -s namelist.bdy

Once the area of interest is selected and the close button is clicked,
open boundary data should be generated in $WDIR/OUTPUT.

Example 2: Lighthouse Reef

[image: _images/eg2.png]
Regional Mask / SSH after 1 day / SST after 1 day

This example has been tested on the ARCHER HPC facillity.

First, create a working directory into which the NEMO
source code can be checked out. Create an inputs directory
to unpack the forcing tar ball.

Note

make sure cray-netcdf-hdf5parallel cray-hdf5-parallel are loaded.
This example has been consructed under PrgEnv-intel.

cd $WDIR
mkdir INPUTS
cd INPUTS
wget ftp.nerc-liv.ac.uk:/pub/general/jdha/inputs.tar.gz
tar xvfz inputs.tar.gz
rm inputs.tar.gz
cd ../
svn co http://forge.ipsl.jussieu.fr/nemo/svn/branches/2014/dev_r4621_NOC4_BDY_VERT_INTERP@5709
svn co http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-1.0@629
cd xios-1.0
cp $WDIR/INPUTS/arch-XC30_ARCHER.* ./arch
./make_xios --full --prod --arch XC30_ARCHER --netcdf_lib netcdf4_par

Next we setup our experiment directory and drop an updated
dtatsd.F90 into MY_SRC to allow the vertical interpolation
of initial conditions on to the new verictal coordinates.
We also apply several patches for bugs in the code.

Note

when executing ./makenemo for the first time only choose OPA_SRC.
For some reason even though LIM_2 is not chosen key_lim2 is
in the cpp keys. This means the first call to ./makenemo will fail.
Just vi LH_REEF/cpp_LH_REEF.fcm and remove key_lim2 and re-issue
the make command.

export CDIR=$WDIR/dev_r4621_NOC4_BDY_VERT_INTERP/NEMOGCM/CONFIG
export TDIR=$WDIR/dev_r4621_NOC4_BDY_VERT_INTERP/NEMOGCM/TOOLS
cd $CDIR/../NEMO/OPA_SRC/SBC
patch -b < $WDIR/INPUTS/fldread.patch
cd ../DOM
patch -b < $WDIR/INPUTS/dommsk.patch
cd ../BDY
patch -b < $WDIR/INPUTS/bdyini.patch
cd $CDIR
rm $CDIR/../NEMO/OPA_SRC/TRD/trdmod.F90
cp $WDIR/INPUTS/arch-* ../ARCH
./makenemo -n LH_REEF -m XC_ARCHER_INTEL -j 10
cp $WDIR/INPUTS/cpp_LH_REEF.fcm ./LH_REEF
cp $WDIR/INPUTS/dtatsd.F90 LH_REEF/MY_SRC/

To generate bathymetry, initial conditions and grid information
we first need to compile some of the NEMO TOOLS (after a small
bugfix - and to allow direct passing of arguments). For some
reason GRIDGEN doesn’t like INTEL:

cd $WDIR/dev_r4621_NOC4_BDY_VERT_INTERP/NEMOGCM/TOOLS/WEIGHTS/src
patch -b < $WDIR/INPUTS/scripinterp_mod.patch
patch -b < $WDIR/INPUTS/scripinterp.patch
patch -b < $WDIR/INPUTS/scrip.patch
patch -b < $WDIR/INPUTS/scripshape.patch
patch -b < $WDIR/INPUTS/scripgrid.patch
cd ../../
./maketools -n WEIGHTS -m XC_ARCHER_INTEL
./maketools -n REBUILD_NEMO -m XC_ARCHER_INTEL
module unload cray-netcdf-hdf5parallel cray-hdf5-parallel
module swap PrgEnv-intel PrgEnv-cray
module load cray-netcdf cray-hdf5
./maketools -n GRIDGEN -m XC_ARCHER
module swap PrgEnv-cray PrgEnv-intel
export TDIR=$WDIR/dev_r4621_NOC4_BDY_VERT_INTERP/NEMOGCM/TOOLS

Note

my standard ARCHER ENV is intel with parallel netcdf you may need to edit accordingly

Back in $WDIR/INPUTS, create a new coordinates file from the
existing global 1/12 mesh and refine to 1/84 degree resolution:

cd $TDIR/GRIDGEN
cp $WDIR/INPUTS/namelist_R12 ./
ln -s namelist_R12 namelist.input
./create_coordinates.exe
cp 1_coordinates_ORCA_R12.nc $WDIR/INPUTS/coordinates.nc

To create the bathymetry we use the gebco dataset. On ARCHER I
had to use a non-default nco module for netcdf operations to work.
I also had to cut down the gebco data as the SCRIP routines failed
for some unknown reason.

cd $WDIR/INPUTS
module load nco/4.5.0
ncap2 -s 'where(topo > 0) topo=0' gebco_1_cutdown.nc tmp.nc
ncflint --fix_rec_crd -w -1.0,0.0 tmp.nc tmp.nc gebco_in.nc
rm tmp.nc
module unload nco cray-netcdf cray-hdf5
module load cray-netcdf-hdf5parallel cray-hdf5-parallel
$TDIR/WEIGHTS/scripgrid.exe namelist_reshape_bilin_gebco
$TDIR/WEIGHTS/scrip.exe namelist_reshape_bilin_gebco
$TDIR/WEIGHTS/scripinterp.exe namelist_reshape_bilin_gebco

We perform a similar operation to create the initial conditions:

Note

I’ve put a sosie pre-step in here to flood fill the land.
I tried using sosie for 3D intepolation, but not convinced.

cd ~
mkdir local
svn co svn://svn.code.sf.net/p/sosie/code/trunk sosie
cd sosie
cp $WDIR/INPUTS/make.macro ./
make
make install
export PATH=~/local/bin:$PATH
cd $WDIR/INPUTS
sosie.x -f initcd_votemper.namelist
sosie.x -f initcd_vosaline.namelist
$TDIR/WEIGHTS/scripgrid.exe namelist_reshape_bilin_initcd_votemper
$TDIR/WEIGHTS/scrip.exe namelist_reshape_bilin_initcd_votemper
$TDIR/WEIGHTS/scripinterp.exe namelist_reshape_bilin_initcd_votemper
$TDIR/WEIGHTS/scripinterp.exe namelist_reshape_bilin_initcd_vosaline

Finally we setup weights files for the atmospheric forcing:

$TDIR/WEIGHTS/scripgrid.exe namelist_reshape_bilin_atmos
$TDIR/WEIGHTS/scrip.exe namelist_reshape_bilin_atmos
$TDIR/WEIGHTS/scripshape.exe namelist_reshape_bilin_atmos
$TDIR/WEIGHTS/scrip.exe namelist_reshape_bicubic_atmos
$TDIR/WEIGHTS/scripshape.exe namelist_reshape_bicubic_atmos

Next step is to create the mesh and mask files that will be used
in the generation of the open boundary conditions:

cd $CDIR
cp $WDIR/INPUTS/cpp_LH_REEF.fcm LH_REEF/
ln -s $WDIR/INPUTS/bathy_meter.nc $CDIR/LH_REEF/EXP00/bathy_meter.nc
ln -s $WDIR/INPUTS/coordinates.nc $CDIR/LH_REEF/EXP00/coordinates.nc
cp $WDIR/INPUTS/runscript $CDIR/LH_REEF/EXP00
cp $WDIR/INPUTS/namelist_cfg $CDIR/LH_REEF/EXP00/namelist_cfg
cp $WDIR/INPUTS/namelist_ref $CDIR/LH_REEF/EXP00/namelist_ref
./makenemo clean
./makenemo -n LH_REEF -m XC_ARCHER_INTEL -j 10
cd LH_REEF/EXP00
ln -s $WDIR/xios-1.0/bin/xios_server.exe xios_server.exe
qsub -q short runscript

If that works, we then need to rebuild the mesh and mask files in
to single files for the next step:

$TDIR/REBUILD_NEMO/rebuild_nemo -t 24 mesh_zgr 96
$TDIR/REBUILD_NEMO/rebuild_nemo -t 24 mesh_hgr 96
$TDIR/REBUILD_NEMO/rebuild_nemo -t 24 mask 96
mv mesh_zgr.nc mesh_hgr.nc mask.nc $WDIR/INPUTS
rm mesh_* mask_* LH_REEF_0000*
cd $WDIR/INPUTS

Now we’re ready to generate the boundary conditions using pyNEMO.
If this is not installed follow the installation guide or a quick
setup could be as follows:

cd ~
module load anaconda
conda create --name pynemo_env scipy=0.16.0 numpy matplotlib=1.5.1 basemap netcdf4 libgfortran=1.0.0
source activate pynemo_env
conda install -c conda-forge seawater=3.3.4
conda install -c https://conda.anaconda.org/srikanthnagella thredds_crawler
conda install -c https://conda.anaconda.org/srikanthnagella pyjnius
export LD_LIBRARY_PATH=/opt/java/jdk1.7.0_45/jre/lib/amd64/server:$LD_LIBRARY_PATH
svn checkout https://ccpforge.cse.rl.ac.uk/svn/pynemo
cd pynemo/trunk/Python
python setup.py build
export PYTHONPATH=~/.conda/envs/pynemo/lib/python2.7/site-packages/:$PYTHONPATH
python setup.py install --prefix ~/.conda/envs/pynemo
cd $WDIR/INPUTS

Start up pynemo and generate boundary conditions. First we need to
create a few ncml files to gather input data and map variable names.
Then using pynemo we define the area we want to model:

Note

pynemo may have to be run on either espp1 or espp2 (e.g. ssh -Y espp1)
as the JVM doesn’t have sufficient memory on the login nodes.

ssh -Y espp1
module load anaconda
source activate pynemo_env
cd $WDIR/INPUTS
pynemo_ncml_generator

Note

The ncml files already exist in the INPUTS directory. There is no need
generate them. It’s a little tricky at the momment as the ncml generator
doesn’t have all the functionality required for this example. Next step
is to fire up pynemo. You can change the mask or accept the default by just
hitting the close button (that really should say ‘build’ or ‘go’ or such like).
Also I’ve had to add the conda env path to the $PYTHONPATH as python does
seem to be able to pick up pyjnius!?

export LD_LIBRARY_PATH=/opt/java/jdk1.7.0_45/jre/lib/amd64/server:$LD_LIBRARY_PATH
export PYTHONPATH=~/.conda/envs/pynemo_env/lib/python2.7/site-packages:$PYTHONPATH
pynemo -g -s namelist.bdy

Let’s have a go at running the model after exiting espp1 (after a few variable
renamings, due to inconsistencies to be ironed out):

exit
cd $WDIR/INPUTS
module unload cray-netcdf-hdf5parallel cray-hdf5-parallel
module load nco/4.5.0
ncrename -v deptht,gdept LH_REEF_bdyT_y1980m01.nc
ncrename -v depthu,gdepu LH_REEF_bdyU_y1980m01.nc
ncrename -v depthv,gdepv LH_REEF_bdyV_y1980m01.nc
module unload nco
module load cray-netcdf-hdf5parallel cray-hdf5-parallel
cd $CDIR/LH_REEF/EXP00
ln -s $WDIR/INPUTS/coordinates.bdy.nc $CDIR/LH_REEF/EXP00/coordinates.bdy.nc
sed -e 's/nn_msh = 3/nn_msh = 0/' namelist_cfg > tmp
sed -e 's/nn_itend = 1/nn_itend = 1440 /' tmp > namelist_cfg
cp $WDIR/INPUTS/*.xml ./
qsub -q short runscript

Troubleshooting

	pyNEMO crashing in MacOSX (Yosemite)?

	Downgrade the scipy package to 0.15

	How to make pyNEMO to work behind firewall/proxy?

	Set the environment variable http_proxy. eg. in Linux export http_proxy=<proxy-server>:<proxy-port>

	Getting this error ‘Warning: Please make sure pyjnius is installed and jvm.dll/libjvm.so/libjvm.dylib is in the path’ ?

	This error is displayed when the application cannot find the java installation on the local machine. please install a java 7.x runtime from http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html and append the path to the library in the system path. eg. on windows SET PATH=”C:\Program Files (x86)\Java\jre1.7\bin\client” on Linux in shell export LD_LIBRARY_PATH=/opt/java/jdk1.7.0_45/jre/lib/amd64/server:$LD_LIBRARY_PATH in osx export DYLD_LIBRARY_PATH=/System/Library/Java/JavaVirtualMachines/jdk1.7.0_09.jdk/Contents/Home/jre/lib/server:$DYLD_LIBRARY_PATH

Index

 _static/ajax-loader.gif

_images/generator-gui.jpg
Define output fle

Output flename

Tracer | Dynamics | Ice | Ecosystem | Grid

Define output fle

Varisble: [temperatire v

Source drectory™

Indudes subds.

Reguiar expression

Existing variable name™

_static/add-variable.jpg
Define output fie

Output flename s temp/out10.ncm Selectfie

Tracer | Dynamics | e | Ecosystem | Grid

Source dectory™ d:/nemo/datasrcdata lon_res C/

Includes subdirs [Regular expression . *V\ncs

Exsting variable name™ iccethic]

Add the current definition to the NcML

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/eg2.png
17°N.... 17°N |- 17°N

16°N 16°N 16°N

88°W 85°W 84°W

0 600 1200 1800 2400 3000 3600 4200 4800 5400

—0 36 —0 30 -0 24 —-0.18 —-0.12 -0 .06 000

_images/add-variable.jpg
Define output fie

Output flename s temp/out10.ncm Selectfie

Tracer | Dynamics | e | Ecosystem | Grid

Source dectory™ d:/nemo/datasrcdata lon_res C/

Includes subdirs [Regular expression . *V\ncs

Exsting variable name™ iccethic]

Add the current definition to the NcML

_images/eg2.png
17°N.... 17°N |- 17°N

16°N 16°N 16°N

88°W 85°W 84°W

0 600 1200 1800 2400 3000 3600 4200 4800 5400

—0 36 —0 30 -0 24 —-0.18 —-0.12 -0 .06 000

nav.xhtml

 Table of Contents

 		
 PyNEMO User Guide (v0.1)

 		
 Introduction

 		
 Installation

 		
 Dependencies

 		
 Anaconda

 		
 From Source

 		
 Usage

 		
 pynemo

 		
 pynemo_settings_editor

 		
 pyNEMO NcML Generator Usage

 		
 Generator GUI

 		
 Define a Target Output File

 		
 Define the Individual Data Variable

 		
 Generate the NcML file

 		
 Regular Expression (Regex)

 		
 Examples

 		
 Example 1: Northwest European Shelf

 		
 Example 2: Lighthouse Reef

 		
 Troubleshooting

_static/minus.png

_static/plus.png

_static/file.png

_static/generator-gui.jpg
Define output fle

Output flename

Tracer | Dynamics | Ice | Ecosystem | Grid

Define output fle

Varisble: [temperatire v

Source drectory™

Indudes subds.

Reguiar expression

Existing variable name™

_static/up.png

_static/up-pressed.png

